A direct proof of the exponential limit law for one dimensional small noise diffusion processes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The small noise limit of order-based diffusion processes

We introduce order-based diffusion processes as the solutions to multidimensional stochastic differential equations, with drift coefficient depending only on the ordering of the coordinates of the process and diffusion matrix proportional to the identity. These processes describe the evolution of a system of Brownian particles moving on the real line with piecewise constant drifts, and are the ...

متن کامل

Exponential Convergence for One Dimensional Contact Processes * )

The complete convergence theorem implies that starting from any initial distribution the one dimensional contact process converges to a limit as t--,-oo. In this paper we give a necessary and sufficient condition on the initial distribution for the convergence to occur with exponential rapidity.

متن کامل

On a Generalized Arc-sine Law for One-dimensional Diffusion Processes

Laws of the occupation times on a half line are studied for one-dimensional diffusion processes. The asymptotic behavior of the distribution function is determined in terms of the speed measure.

متن کامل

Sample Path Regularity for One-Dimensional for Diffusion Processes

1. Basic Assumptions. Assume that (i) {Tt} is a strongly-continuous semigroup of bounded linear operators on the Banach space B = C0(I) = { f continuous on I = [0, 1] : f(0) = f(1) = 0 } (ii) If f(x) ≥ 0 and f ∈ B, then Ttf(x) ≥ 0 and Ttf(x) ≤ maxy∈I f(y). In general, the infinitesimal generator of a strongly-continuuous semigroup of linear operators Tt on any Banach space B is defined by Af = ...

متن کامل

Sample Path Regularity for One-Dimensional Diffusion Processes

1. Basic Assumptions. Assume that (i) {Tt} is a strongly-continuous semigroup of bounded linear operators on the Banach space B = C0(I) = { f continuous on I = [0, 1] : f(0) = f(1) = 0 } (ii) If f(x) ≥ 0 and f ∈ B, then Ttf(x) ≥ 0 and Ttf(x) ≤ maxy∈I f(y). In general, the infinitesimal generator of a strongly-continuuous semigroup of linear operators Tt on any Banach space B is defined by Af = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1988

ISSN: 0022-247X

DOI: 10.1016/0022-247x(88)90407-6